
Running Haskell on the CLR

“but does it run on Windows?”

Jeroen Leeuwestein, Tom Lokhorst
jleeuwes@cs.uu.nl, tom@lokhorst.eu

January 29, 2009



Don’t get your hopes up!

module Main where

foreign import ccall "primAddInt" (+) :: Int → Int → Int

inc :: Int → Int
inc x = x + 1

data List = Nil | Cons Int List

length :: List → Int
length Nil = 0
length (Cons x xs) = inc (length xs)

five :: List
five = Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil))))

main = length five



Why target the CLR?

A lot of presence.

I Multiple versions of Windows desktops.

I OS X and Linux desktops, through Mono.

I Web browsers, through Silverlight and Moonlight.
I Mobile devices:

I Windows Mobile.
I Mono on the iPhone and Android.

I In the cloud!
I Windows Azure: Distributed computation environment.



Why target the CLR?

Rich environment.

I Interop with other languages.

I Access a huge set of libraries.

I Provide libraries developed in Haskell.



What is the CLR?

Common Language Runtime / Mono Project

I Stack-based virtual machine.

I First-class support for classes with methods.

I Basic operations for reference types and value types.

I Type safe: operations must match the exact type.

I Dynamic casting is allowed.

I Executes Common Intermediate Language (CIL).
I CIL has a concrete syntax.

I ilasm
I ildasm / monodis



What is the CLR?

.class private Test extends [mscorlib ] System.Object
{

.method private static void Main () cil managed
{

.entrypoint

.locals init (int32 x)
ldc i4 2
stloc 0
ldc i4 3
ldloc 0
add
call void class [mscorlib ] System.Console :: WriteLine (int32)
ret

}
}



Architecture of .NET backend

$ bin/8/ehc -ccil Test.hs
$ ls
Test.hs Test.il
$ ilasm Test.il
$ ls
Test.exe Test.hs Test.il
$ mono Test.exe
42



Architecture of .NET backend



Architecture of .NET backend

Haskell package language-cil.

Abstract syntax for the Common Intermediate Language.

With build functions and pretty printer for concrete syntax.

Future:

I Support all CIL constructs

I Parser for concrete syntax

I Analysis functions

I Release on Hackage



Philosophy on the Runtime System

How to treat the RTS?

I As an abstract machine?
I simulate virtual memory
I simulate registers
I simulate functions and function calls

I Use it for what it was designed
I build strongly typed objects
I use inheritance
I use method calling conventions
I interop with other languages

Look at the what other languages do (F#).



Philosophy on the Runtime System
Some questions

data List = Nil | Cons Int List

What is the type of List?

What are the types of Nil and Cons?

How do we handle do thunks and partial applications?

And what about updates?



Philosophy on the Runtime System
Some questions

data List = Nil | Cons Int List



Philosophy on the Runtime System
Some questions

data List = Nil | Cons Int List

Cons 1 (xs ‘append‘ ys)



Philosophy on the Runtime System
Some questions

data List = Nil | Cons Int List



xs = [1, 2 ]





Code generation

I Generate code from GRIN

I Direct translation of GRIN constructs



Code generation
Sequence

Evaluate expr and bind the result to x.

expr; λx → ...length x ...

expr
STLOC x
...
LDLOC x
CALL length(object)
...



Code generation
Case

Match a tag variable against different alternatives.

case tag of
CNil → ...
CCons → ...

tag
L1:

DUP
ISINST CNil
BRFALSE L2
POP
...

L2:



Code generation
Store

Store a value on the heap and return a pointer to it.

store val

val
NEWOBJ RefObj::.ctor(object)
All our values are already stored on the heap, so we only have to
create a pointer.



Code generation
Update

Update the value pointed to by pointer x with val.

update x val

LDLOC x
val
STFLD RefObj::Value



Code generation
Fetch 0

Fetch the tag of a node, following pointer x.

fetch x [0 ]

LDLOC x
LDFLD RefObj::Value

We have no representation for stand-alone tags. We use the
complete node.



Code generation
Fetch n

Fetch the first field of a node, following pointer x.

fetch x [1 ]

LDLOC x
LDFLD RefObj::Value
LDFLD Int/Int::Value
LDFLD Int/Int::Value

Uh oh! We have to know the class.



Code generation
Fetch n – Class information

Fortunately, GRIN stores this information for us:

GrExpr FetchField x 1 (Just (GrTag Con {1, 1} 0 Int))

Phew.



Code generation
Binding multiple variables

However:

...; λx →
inc x; λ(y z) →
...

I We have to extract the first field to bind to z.

I We need the class information for this.
LDFLD ?/?::Value

I But we don’t know what y is!



Code generation
Types!

We need the possible tags of every variable, so we can figure out
which class to use.

Basically type (tag) inferencing. A lot of work!

Fortunately, the heap points-to analysis does this already.



Heap points-to analysis

The analysis gives us, for each variable, what kind of values it can
contain.

Example:

fetch T 1; x →
inc x ; λ(y z) →
update T (y z)

T is a thunk here.



Heap points-to analysis
fetch T 1; x →
inc x ; λ(y z) →
update T (y z)

Variables:

T Pointer [13,14]
inc Node [(CInt, [Basic])]
x Pointer [13,14]
y Tag CInt
z Basic

Heap:

13 Node [(CInt, [Basic])]
14 Node [(CInt, [Basic]),(Finc, [Pointer [13,14]])]



Future work
Obvious enhancements

I stloc x, ldloc x
I more stack focussed code

I Silly-like
I tail calls!

I remove RefObj indirection

I use value types
I more polymorphic code

I inline unboxed values



Future work
More ‘out there’ stuff

Simon Peyton Jones on Haskell for CLR:

I Generate IL
I Runtime representation for thunks

I Interop with .NET libraries
I No foreign import ... for everything

I Other GHC primitives:
I the I/O monad
I arbitrary precision arithmetic
I concurrency
I exceptions
I finalisers
I stable pointers
I Software transactional memory

I Existing libraries



In conclusion

We think our runtime representation is workable.

We have an interesting prototype that shows this.

There’s much work still to be done...



EOF


